Testing

UCB-THW
Rachel Slaybaugh
March 11, 2015



H OowW d O yOu (or anyone else for that matter)
know

that your code works?



Motivation

Verification: Have we built the software

correctly (i.e. does it match the specification)?

Validation: Have we built the right software

(i.e. is this what the customer wants)?

Two different but important goals
Use different kinds of tests to answer



Testing Levels

Unit: verify the functionality of a specific
section of code

Integration: test interfaces between units
System: verify completely integrated system

System integration (if applicable): works
properly with 3" party systems

Regression: ensure that new code changes
don’t break anything



Test Driven Development

Write all the tests
before you write the code.

Why?



Error Checking

* One way to force the code to “test as you go”
is to write checks into the code itself

e E.g. make sure the right sizes and data types
are being used everywhere

* Example:

https://github.com/rachelslaybaugh/JellyBean
Code



Exceptions

|II

Separate the “normal” flow and the

“exceptional” cases

TRY to execute a block of code

CATCH any errors that are THROWNn
Handle different kinds of errors

Limit error checking redundancy

Add meaning and readability to errors



Unit Tests

* Nosetests:
http://nose.readthedocs.org/en/latest/testing
.html

* Example:
https://github.com/pyne/pyne/blob/develop/
tests/test _data.py

Is testing
https://github.com/pyne/pyne/blob/develop/

pyne/data.pyx



Regression Tests

* An extra awesome way to do this is with
Continuous Integration

e Variation of running all unit tests before code
is integrated and possibly every night

 Example: BatLab and PyNE,
https://github.com/pyne/pyne/pulls



Summary

Testing can help you catch errors right away

Tests give you a way to track all the parts of
your code

You can add checking and testing as you go

Tests help with debugging and maintaining
code

Tests save you time in the long run



